Abstract

The aim of this thesis is to develop a theoretical framework to study parameter estimation of quantum channels. We begin by describing the classical task of parameter estimation that we build upon. In its most basic form, parameter estimation is the task of obtaining an estimate of an unknown parameter from some experimental data. This experimental data can be seen as a number of samples of a parameterized probability distribution. In general, the goal of such a task is to obtain an estimate of the unknown parameter while minimizing its error. We study the task of estimating unknown parameters which are encoded in a quantum channel. A quantum channel is a map that describes the evolution of the state of a quantum system. We study this task in the sequential setting. This means that the channel in question is used multiple times, and each channel use happens subsequent to the previous one. A sequential strategy is the most general way to use, or process, a channel multiple times. Our goal is to establish lower bounds on the estimation error in such a task. These bounds are called Cramer--Rao bounds. Quantum channels encompass all possible dynamics allowed by quantum mechanics, and sequential estimation strategies capture the most general way to process multiple uses of a channel. Therefore, the bounds we develop are universally applicable. We consider the use of catalysts to enhance the power of a channel estimation strategy. This is termed amortization. The reason we do so is to investigate if an n-round sequential estimation strategy does better than a simpler parallel strategy. Quantitatively, the power of a channel for a particular estimation task is determined by the channel's Fisher information. Thus, we study how much a catalyst quantum state can enhance the Fisher information of a quantum channel by defining the amortized Fisher information. In the quantum setting, there are many Fisher information quantities that can be defined. We limit our study to two particular ones: the symmetric logarithmic derivative (SLD) Fisher information and the right logarithmic derivative (RLD) Fisher information. We establish our Cramer--Rao bounds by proving that for certain Fisher information quantities, catalyst states do not improve the performance of a sequential estimation protocol. The technical term for this is an amortization collapse. We show how such a collapse leads directly to a corresponding Cramer--Rao bound. We establish bounds both when estimating a single parameter and when

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.