Abstract

Faraday rotation has become a powerful tool in a large variety of physics applications. Most prominently, Faraday rotation can be used in precision magnetometry. Here we report the first measurements of gyromagnetic Faraday rotation on a dense, hyperpolarized $^3$He gas target. Theoretical calculations predict the rotations of linearly polarized light due to the magnetization of spin-1/2 particles are on the scale of 10$^{-7}$ radians. To maximize the signal, a $^3$He target designed to use with a multipass cavity is combined with a sensitive apparatus for polarimetry that can detect optical rotations on the order of 10$^{-8}$ radians. Although the expected results are well above the sensitivity for the given experimental conditions, no nuclear-spin induced rotation was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.