Abstract

Laboratory measurements of rock strength provide limiting values of lithospheric stress, provided that one effective principal stress is known. Fracture strengths are too variable to be useful; however, rocks at shallow depth are probably fractured so that frictional strength may apply. A single linear friction law, termed Byerlee's law, holds for all materials except clays, to pressures of more than 1 GPa, to temperatures of 500°C, and over a wide range of strain rates. Byerlee's law, converted to maximum or minimum stress, is a good upper or lower bound to observed in situ stresses to 5 km, for pore pressure hydrostatic or subhydrostatic. Byerlee's law combined with the quartz or olivine flow law provides a maximum stress profile to about 25 or 50 km, respectively. For a temperature gradient of 15°K/km, stress will be close to zero at the surface and at 25 km (quartz) or 50 km (olivine) and reaches a maximum of 600 MPa (quartz) or 1100 MPa (olivine) for hydrostatic pore pressure. Some new permeability studies of crystalline rocks suggest that pore pressure will be low in the absence of a thick argillaceous cover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.