Abstract

We present detailed numerical calculations of the light element abundances synthesized in a Universe consisting of matter- and antimatter- domains, as predicted to arise in some electroweak baryogenesis scenarios. In our simulations all relevant physical effects, such as baryon-antibaryon annihilations, production of secondary particles during annihilations, baryon diffusion, and hydrodynamic processes are coupled to the nuclear reaction network. We identify two dominant effects, according to the typical spatial dimensions of the domains. Small antimatter domains are dissipated via neutron diffusion prior to He4 synthesis at T_He4 \approx 80 keV, leading to a suppression of the primordial He4 mass fraction. Larger domains are dissipated below T_He4 via a combination of proton diffusion and hydrodynamic expansion. In this case the strongest effects on the elemental abundances are due to anti-p He4 annihilations, leading to an overproduction of He3 relative to H2 and to overproduction of Li6 via non-thermal nuclear reactions. Both effects may result in light element abundances deviating substantially from the standard Big Bang Nucleosynthesis yields and from the observationally inferred values. This allows us to derive stringent constraints on the antimatter parameters. For some combinations of the parameters, one may obtain both, low H2 and low He4, at a common value of the cosmic baryon density, a result seemingly favored by current observational data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.