Abstract

We find that single-star mechanisms for Intermediate Luminosity Optical Transients (ILOTs; Red Transients; Red Novae) which are powered by energy release in the core of asymptotic giant branch (AGB) stars are likely to eject the entire envelope, and hence cannot explain ILOTs in AGB and similar stars. There are single-star and binary models for the powering of ILOTs, which are eruptive stars with peak luminosities between those of novae and supernovae. In single-star models the ejection of gas at velocities of ~500-1000 km/s and a possible bright ionizing flash, require a shock to propagate from the core outward. Using a self similar solution to follow the propagation of the shock through the envelope of two evolved stellar models, a 6Mo AGB star and an 11Mo yellow supergiant (YSG) star, we find that the shock that is required to explain the observed mass loss also ejects most of the envelope. We also show that for the event to have a strong ionizing flash the required energy expels most of the envelope. The removal of most of the envelope is in contradiction with observations. We conclude that single-star models for ILOTs of evolved giant stars encounter severe difficulties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.