Abstract

Although UV irradiation represents an energy efficient disinfection method, bacterial regrowth in UV irradiated secondary effluents is a serious problem for their direct reuse (e.g., for domestic or irrigation purposes). The decrease of the lethal UV fluence caused by coverings (scaling and biofouling) on quartz sleeves of UV lamps and/or fluctuating specific water parameters (suspended solids, transmittance or turbidity) results in a reversible inactivation of faecal coliforms ( Escherichia coli ). The reactivation of E. coli is increased with rising light intensity (≥470 Lux) and rising temperature (≥20 °C). The supplementation of UV disinfection with an electrolysis compartment ensures a reliable, sustained bacterial reduction and prevents reactivation of E. coli in UV irradiated (H = 138–140 J m−2) wastewater at a concentration of total oxidants of 0.5 mg L−1. The electric charge input of 0.012 Ah L−1 was lowest on MOX (mixed oxide) electrodes compared to particle BDD (boron-doped diamond) and thin film BDD electrodes. The formation of organic by-products (adsorbable organically bound halogens, trihalomethanes) ranged from marginal to moderate. In contrast to BDD electrodes, no chlorite, chlorate and perchlorate were observed on MOX electrodes. The energy consumption of the UV/electrolysis hybrid reactor was 0.17 kWh m−3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.