Abstract

We describe in detail our caesium atom interferometer which uses a combination of microwaves and momentum-changing adiabatic transfer pulses. This combination allows us to achieve spatial separation between the arms of the interferometer. We account for the observed visibility of the resulting interference fringes and find that the effects which contribute the most are optical pumping and magnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.