Abstract

In equilibrium systems, time and ensemble averages of physical quantities are equivalent due to ergodic exploration of phase space. In driven systems, it is unknown if a similar equivalence of time and ensemble averages exists. We explore effective limits of such convergence in a sheared bubble raft using averages of the bubble velocities. In independent experiments, averaging over time leads to well-converged velocity profiles. However, the time averages from independent experiments result in distinct velocity averages. Ensemble averages are approximated by randomly selecting bubble velocities from independent experiments. Increasingly better approximations of ensemble averages converge toward a unique velocity profile. Therefore, the experiments establish that in practical realizations of nonequilibrium systems, temporal averaging and ensemble averaging can yield convergent (stationary) but distinct distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.