Abstract

The task of privacy amplification, in which Alice holds some partially secret information with respect to an adversary Eve and wishes to distill it until it is completely secret, is known to be solvable almost optimally in both the classical and quantum worlds. Unfortunately, when considering an adversary who is limited only by nonsignaling constraints such a statement cannot be made in general. We here consider systems which violate the chained Bell inequality and prove that under the natural assumptions of a time-ordered nonsignaling system, which allow past subsystems to signal future subsystems (using the device's memory for example), superpolynomial privacy amplification by any hashing is impossible. This is of great relevance when considering practical device-independent key-distribution protocols which assume a superquantum adversary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.