Abstract
Ultraintense laser pulses might be capable of producing plasma mirrors through ultrarelativistic oscillating electrons. Two kinds of such mirrors with relativistic factors γ∼100–300 were contemplated recently as a tool for producing huge frequency upshifts 4γ2 of reflected laser pulses as well as the compressing and focusing of those pulses. The combination of these effects would result in dramatic light intensification toward the vacuum breakdown intensities (Schwinger limit) [S. V. Bulanov et al., Phys. Rev. Lett. 91, 085001 (2003) and S. Gordienko et al., Phys. Rev. Lett. 94, 103903 (2005)]. The analysis performed in these publications was limited, however, to idealized situations of cold uniform plasmas and uniform laser intensities. The analysis here of effects of electron thermal motion and random inhomogeneities in the plasma density or laser intensity indicates that the largest relativistic factors allowed within these schemes are much smaller than those assumed in the idealized models, unless essentially new physical mechanisms are adduced in addition to those already considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.