Abstract

In this section we extend the notion of the limit of a sequence to the concept of the limit of a function. Hereby we obtain a tool which enables us to investigate the behaviour of graphs of functions in the neighbourhood of chosen points. Moreover, limits of functions form the basis of one of the central themes in mathematical analysis, namely differentiation (Chap. 7). In order to derive certain differentiation formulae some elementary limits are needed, for instance, limits of trigonometric functions. The property of continuity of a function has far-reaching consequences, like, for instance, the intermediate value theorem, according to which a continuous function which changes sign in an interval has a zero. Not only does this theorem allow one to show the solvability of equations, it also provides numerical procedures to approximate the solutions. Further material on continuity can be found in Appendix C.KeywordsClosed IntervalCentral ThemeTrigonometric FunctionSine FunctionRoot FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.