Abstract

Although the power conversion efficiency of perovskite solar cells has improved rapidly, a rational path for further improvement remains unclear. The effect of large morphological heterogeneity of polycrystalline perovskite films on their device performance by photoluminescence (PL) microscopy has now been studied. Contrary to the common belief on the deleterious effect of morphological heterogeneity on carrier lifetimes and diffusivities, in neat CH3 NH3 PbI3 (Cl) polycrystalline perovskite films, the local (intra-grain) carrier diffusivities in different grains are all surprisingly high (1.5 to 3.3 cm2 s-1 ; comparable to bulk single-crystals), and the local carrier lifetimes are long (ca. 200 ns) and surprisingly homogenous among grains, and uniform across grain boundary and interior. However, there is a large heterogeneity of carrier extraction efficiency at the perovskite grain-electrode interface. Improving homogeneity at perovskite grain-electrode contacts is thus a promising direction for improving the performance of perovskite thin-film solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.