Abstract

Electrical cables and harnesses have been identified as a potential source of fire in the spacecraft cabin. Future space missions may require spacecraft cabin environments to have elevated oxygen concentrations and reduced ambient pressures which could change the wire fire behaviors. In this work, a group of experiments is conducted to measure the flammability limit of polyethylene (PE) insulated wires under varying oxygen concentration and external radiation. Wires with different insulation dimensions, core conditions (with and without copper core) and insulations (LDPE, HDPE and black LDPE) are examined. Experiments show that external radiation extends the burning limit of the wire insulation to a lower limiting oxygen concentration (LOC) in a linear manner for all wire configurations. Comparison also reveals that the copper core acts as a heat sink to reduce the wire flammability, similar to its role in the ignition of wire insulation, while different from the heat source found in flame spread over the wire insulation. It is also observed that with the external radiation, LDPE insulated wire become less flammable than HDPE and black LDPE insulated wires, in contrast to the result without external radiation. A simple theoretical analysis shows that (1) the in-depth radiation through the semi-transparent LDPE to the copper core acts as an additional cooling to weaken the external radiative heating, and (2) the easier dripping of molten LDPE reduces its flammability. The results of this work provide valuable information about the fire risk of electrical wires under variable oxygen concentration and external heating from an adjacent fire. Thus, it may be useful toward upgrading the fire safety design and standards of future space missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.