Abstract

A self-consistent microscopic theory has been used to calculate the limiting ionic conductivity of unipositive rigid ions in formamide at different temperatures. The calculated results are found to be in good agreement with the experimental data. The above theory can also predict successfully the experimentally observed temperature dependence of total ionic conductivity of a given uniunivalent electrolyte in formamide. The effects of dynamic polar solvent response on ionic conductivity have been investigated by studying the time dependent progress of solvation of a polarity probe dissolved in formamide. The intermolecular vibration (libration) band that is often detected in the range of 100-200 cm(-1) in formamide is found to play an important role in determining both the conductivity and the ultrafast polar solvent response in formamide. The time dependent decay of polar solvation energy in formamide has been studied at three different temperatures, namely, at 283.15, 298.15, and 328.15 K. While the predicted decay at 298.15 K is in good agreement with the available experimental data, the calculated results at the other two temperatures should be tested against experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call