Abstract
We further analyze a recent perturbative two-loop calculation of the expectation value of two axi-symmetric circular Maldacena-Wilson loops in N=4 gauge theory. Firstly, it is demonstrated how to adapt the previous calculation of anti-symmetrically oriented circles to the symmetric case. By shrinking one of the circles to zero size we then explicitly work out the first few terms of the local operator expansion of the loop. Our calculations explicitly demonstrate that circular Maldacena-Wilson loops are non-BPS observables precisely due to the appearance of unprotected local operators. The latter receive anomalous scaling dimensions from non-ladder diagrams. Finally, we present new insights into a recent conjecture claiming that coincident circular Maldacena-Wilson loops are described by a Gaussian matrix model. We report on a novel, supporting two-loop test, but also explain and illustrate why the existing arguments in favor of the conjecture are flawed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.