Abstract
The maximum emission current density is calculated for a time-independent, relativistic, cycloidal electron flow in a diode that is under the condition of magnetic insulation. Contrary to conventional thinking, this maximum current is not determined by the space charge limited condition on the cathode, even when the emission velocity of the electrons is assumed to be zero. The self electric and magnetic fields associated with the cycloidal flow are completely accounted for. This maximum current density is confirmed by a two-dimensional, fully electromagnetic and fully relativistic particle-in-cell code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.