Abstract

We review recent work on the compactification of the moduli space of Hitchin’s self-duality equation. We study the degeneration behavior near the ends of this moduli space in a set of generic directions by showing how limiting configurations can be desingularized. Following ideas of Hitchin, we can relate the top boundary stratum of this space of limiting configurations to a Prym variety. A key role is played by the family of rotationally symmetric solutions to the self-duality equation on ℂ, which we discuss in detail here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.