Abstract
ABSTRACTThe Amoroso kernel density estimator (Igarashi and Kakizawa 2017) for non-negative data is boundary-bias-free and has the mean integrated squared error (MISE) of order O(n− 4/5), where n is the sample size. In this paper, we construct a linear combination of the Amoroso kernel density estimator and its derivative with respect to the smoothing parameter. Also, we propose a related multiplicative estimator. We show that the MISEs of these bias-reduced estimators achieve the convergence rates n− 8/9, if the underlying density is four times continuously differentiable. We illustrate the finite sample performance of the proposed estimators, through the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.