Abstract

Consider a list of labeled objects that are organized in a heap. At each time, object $j$ is selected with probability $p_j$ and moved to the top of the heap. This procedure defines a Markov chain on the set of permutations which is referred to in the literature as Move-to-Front rule. The present contribution focuses on the stationary search cost, namely the position of the requested item in the heap when the Markov chain is in equilibrium. We consider the scenario where the number of objects is infinite and the probabilities $p_j$’s are defined as the normalization of the increments of a subordinator. In this setting, we provide an exact formula for the moments of any order of the stationary search cost distribution. We illustrate the new findings in the case of a generalized gamma subordinator and deal with an extension to the two–parameter Poisson–Dirichlet process, also known as Pitman–Yor process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.