Abstract
The stochastic sequential assignment problem assigns distinct workers to sequentially arriving tasks with stochastic parameters. In this paper the assignments are performed so as to minimize the threshold probability, which is the probability of the long-run reward per task failing to achieve a target value (threshold). As the number of tasks approaches infinity, the problem is studied for independent and identically distributed (i.i.d.) tasks with a known distribution function and also for tasks that are derived from r distinct unobservable distributions (governed by a Markov chain). Stationary optimal policies are presented, which simultaneously minimize the threshold probability and achieve the optimal long-run expected reward per task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.