Abstract

We develop a theory of “minimal $\theta$-graphs” and characterize the behavior of limit laminations of such surfaces, including an understanding of their limit leaves and their curvature blow-up sets. We use this to prove that it is possible to realize families of catenoids in euclidean space as limit leaves of sequences of embedded minimal disks, even when there is no curvature blow-up. Our methods work in a more general Riemannian setting, including hyperbolic space. This allows us to establish the existence of a complete, simply connected, minimal surface in hyperbolic space that is not properly embedded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.