Abstract

All possible exotic and smooth solitary wave solutions to the two-component Dullin–Gottwald–Holm equation are investigated. We classify this equation in specified regions of the parametric space. Moreover, we give the limiting relations of all different solitary waves as the parameters trend to some special values. All solitary waves suffer from external perturbations, and these solutions turn to the chaotic state easily. In view of the variation of the control coefficient, the smooth solitary wave is the easiest one to be controlled into a stable state and the cusped solitary wave is the most difficult to be controlled under the same controller condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.