Abstract

Cylindrospermopsin (CYN) is a cyanobacterial toxin increasingly found in drinking water sources worldwide. Toxicity studies have shown CYN can induce effects in a range of different cell types with primary hepatocytes consistently shown to be the most sensitive cellular model. How CYN enters the intracellular environment is not clear, although the size and hydrophilic nature of the toxin suggest it would not readily cross a lipid bilayer. In this study, a Vero cell line expressing green fluorescent protein (GFP) was used to monitor for CYN uptake based on the toxin's potent effects on protein synthesis. Effects on the GFP signal were compared with inhibitors cycloheximide (CHEX) and emetine. While CYN potency was demonstrated in a cell-free system (CYN > CHEX > emetine) it was considerably reduced in the Vero-GFP cell model (CHEX, emetine > > CYN). In contrast to other inhibitors, CYN effects on GFP signal increased 6 fold over 4–24 h incubation indicating slow, progressive uptake of the toxin. Confirming that the uptake process is not energy dependent CYN entry also occurred at 4 °C, while competition experiments excluded the uracil nucleobase transporter system as potential mechanism for CYN uptake. Dilution of media enhanced CYN uptake by Vero-GFP cells although mechanism by which this occurred is unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.