Abstract

Poliovirus is an enteric virus that rarely invades the human central nervous system (CNS). To identify barriers limiting poliovirus spread from the periphery to CNS, we monitored trafficking of 10 marked viruses. After oral inoculation of susceptible mice, poliovirus was present in peripheral neurons, including vagus and sciatic nerves. To model viral trafficking in peripheral neurons, we intramuscularly injected mice with poliovirus, which follows a muscle–sciatic nerve–spinal cord–brain route. Only 20% of the poliovirus population successfully moved from muscle to brain, and three barriers limiting viral trafficking were identified. First, using light-sensitive viruses, we found limited viral replication in peripheral neurons. Second, retrograde axonal transport of poliovirus in peripheral neurons was inefficient; however, the efficiency was increased upon muscle damage, which also increased the transport efficiency of a non-viral neural tracer, wheat germ agglutinin. Third, using susceptible interferon (IFN) α/β receptor knockout mice, we demonstrated that the IFN response limited viral movement from the periphery to the brain. Surprisingly, the retrograde axonal transport barrier was equivalent in strength to the IFN barrier. Illustrating the importance of barriers created by the IFN response and inefficient axonal transport, IFN α/β receptor knockout mice with muscle damage permitted 80% of the viral population to access the brain, and succumbed to disease three times faster than mice with intact barriers. These results suggest that multiple separate barriers limit poliovirus trafficking from peripheral neurons to the CNS, possibly explaining the rare incidence of paralytic poliomyelitis. This study identifies inefficient axonal transport as a substantial barrier to poliovirus trafficking in peripheral neurons, which may limit CNS access for other viruses.

Highlights

  • Many viruses are neurotropic, including West Nile virus, rabies virus, alpha herpesviruses, and poliovirus

  • 20% of the poliovirus population successfully moved from the periphery to the central nervous system (CNS)

  • We discovered that transport of poliovirus in peripheral neurons was very inefficient, and the innate immune response limited viral movement

Read more

Summary

Introduction

Many viruses are neurotropic, including West Nile virus, rabies virus, alpha herpesviruses, and poliovirus. Poliovirus is an enteric virus that rarely causes disease; in the pre-vaccine era, ,1% of infected individuals developed paralytic poliomyelitis due to viral invasion of the central nervous system (CNS) and destruction of motor neurons. It is still unclear whether poliovirus accesses the CNS via blood or neural routes, but it has been shown that viremia is a prerequisite for CNS invasion of humans and non-human primates [5,6]. It is thought that viremic blood seeds peripheral tissues, virus enters neurons of the peripheral nervous system (PNS) that innervate peripheral tissues, and virus traffics to the CNS using retrograde axonal transport

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call