Abstract
Pervasive anoxia in the subsurface ocean during the Proterozoic may have allowed large fluxes of biogenic CH4 to the atmosphere, enhancing the climatic significance of CH4 early in Earth's history. Indeed, the assumption of elevated pCH4 during the Proterozoic underlies most models for both anomalous climatic stasis during the mid-Proterozoic and extreme climate perturbation during the Neoproterozoic; however, the geologic record cannot directly constrain atmospheric CH4 levels and attendant radiative forcing. Here, we revisit the role of CH4 in Earth's climate system during Proterozoic time. We use an Earth system model to quantify CH4 fluxes from the marine biosphere and to examine the capacity of biogenic CH4 to compensate for the faint young Sun during the "boring billion" years before the emergence of metazoan life. Our calculations demonstrate that anaerobic oxidation of CH4 coupled to SO42- reduction is a highly effective obstacle to CH4 accumulation in the atmosphere, possibly limiting atmospheric pCH4 to less than 10 ppm by volume for the second half of Earth history regardless of atmospheric pO2 If recent pO2 constraints from Cr isotopes are correct, we predict that reduced UV shielding by O3 should further limit pCH4 to very low levels similar to those seen today. Thus, our model results likely limit the potential climate warming by CH4 for the majority of Earth history-possibly reviving the faint young Sun paradox during Proterozoic time and challenging existing models for the initiation of low-latitude glaciation that depend on the oxidative collapse of a steady-state CH4 greenhouse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.