Abstract

Systemic injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the dopaminergic (DA) nigrostriatal system in C57BL 6 mice. We have investigated the effect of MPTP neurotoxicity and subsequent adrenal medullary grafts into the striatum of young (2–3 months) and aging (12 months) mice. MPTP treatment (4 × 20 mg/kg ip given 3 or 12 h apart in young mice and 12 h apart in aging mice) resulted in 80–90% depletion of striatal DA and virtual disappearance of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in both young and aging mice 1 week following treatment. Only partial recovery of TH-IR fibers was seen 5 weeks after MPTP treatment in young mice, while virtually no recovery was seen in aging mice. Adrenal medullary minced pieces were grafted into the striatum of young and aging mice 1 week after MPTP treatment. In young mice, dense TH-IR fibers were observed in the striatum on the grafted side 4 weeks later, far denser than those in sham-operated striatum. Although this staining was most prominent around the grafts, many TH-IR fibers also were found in the ventral striatum close to the nucleus accumbens. No such increase in TH-IR fibers was found on the nongrafted side. DA concentration on the grafted side recovered to 45% of the control level. In aging mice receiving similar grafts, TH-IR fibers also were observed in the grafted striatum, but were less dense and more restricted around the site of the graft compared with young mice. DA concentration on the grafted side was 29% of the control level. We conclude that the MPTP-depleted nigrostriatal DA system in aging mouse brain can recover partially following adrenal medullary grafts, but the degree of recovery is more limited compared with that in young brain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call