Abstract

The basic, intrinsically disordered regions of eukaryotic histones and their bacterial counterparts are presumed to act as signaling hubs to regulate the compaction of chromosomes or nucleoids and various DNA processes such as gene expression, recombination, and DNA replication. Posttranslational modifications (PTMs) on these regions are pivotal in regulating chromosomal or nucleoid compaction and DNA processes. However, the low sequence complexity and the presence of short lysine-rich repeats in the regions have hindered the accurate determination of types and locations of PTMs using conventional proteomic procedures. We described a limited proteolysis protocol using trypsin to analyze PTMs on mycobacterial DNA-binding protein 1 (MDP1), a nucleoid-associated protein in mycobacterial species that possesses an extended, lysine-rich, intrinsically disordered region in its C-terminal domain. This limited proteolysis approach successfully revealed significant methylation on many lysine residues in the C-terminal domain of MDP1 purified from Mycobacterium tuberculosis, which was lacking in the corresponding region of recombinant MDP1 expressed in Escherichia coli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.