Abstract

In Agave angustifolia Haw., a leaf-succulent constitutive crassulacean acid metabolism (CAM) plant of tropical Panama, we tested whether nocturnal CO2 uptake and growth were reduced at night temperatures above 20°C. Unlike some CAM model species from habitats with pronounced day-night temperature variations, in A. angustifolia temperature affected little the relative contributions of CAM and C3 photosynthesis to growth. In plants grown under 12h light/dark regimes of 25/17, 30/22 and 35/27°C, biomass increased with temperature. Maintaining day temperature at 35°C and reducing night temperature from 27 to 17°C markedly lowered growth, a reduction partially reversed when roots were heated to 27°C. Across all treatments, whole-shoot δ13C values ranged between -14.6 and -13.2 ‰, indicating a stable proportion of CO2 was fixed at night, between 75 and 83%. Nocturnal acidification reflected growth, varying between 339 and 393μmol H+ g-1 fresh mass and 63-87μmol H+ cm-2. In outdoor open-top chambers, warming the air 3°C above ambient at night did not reduce biomass accumulation. The persistence of a high capacity for nocturnal CO2 fixation at the expense of a limited capacity for switching between C3 and CAM probably makes this Agave, and others like it, potential species for biomass production in seasonally-dry landscapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.