Abstract

The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9–12 years old (N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training’s lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development.

Highlights

  • Studies have shown that persistent difficulties in mathematics develop in approximately 5% of school-aged children

  • For effect of Jungle Memory training (JM) on gains in working memory we considered two competing hypotheses, for both short and long term effects

  • This study provides a limited contribution to the literature of working memory training and its near and far transfer effects, by directly examining the effects on mathematics training

Read more

Summary

Introduction

Studies have shown that persistent difficulties in mathematics develop in approximately 5% of school-aged children. An even larger number of children struggle with math on a day-to-day basis, without meeting the criteria for developmental dyscalculia. The underpinnings for math difficulties are manifold, with both cognitive as well as emotional factors contributing to its manifestation and maintenance over time. Attentional resources (Marzocchi et al, 2002; Dormal et al, 2014), memory processes (Perna et al, 2015), basic number sense (Piazza, 2010; Brankaer et al, 2014; Vanbinst et al, 2015), as well as math anxiety (i.e., Maloney and Beilock, 2012) hold their own in what seems to be a still unintegrated field of research.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.