Abstract
Typically, practical nonsmooth optimization problems involve functions with hundreds of variables. Moreover, there are many practical problems where the computation of even one subgradient is either a difficult or an impossible task. In such cases derivative-free methods are the better (or only) choice since they do not use explicit computation of subgradients. However, these methods require a large number of function evaluations even for moderately large problems. In this article, we propose an efficient derivative-free limited memory discrete gradient bundle method for nonsmooth, possibly nonconvex optimization. The convergence of the proposed method is proved for locally Lipschitz continuous functions and the numerical experiments to be presented confirm the usability of the method especially for medium size and large-scale problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.