Abstract
AbstractSeismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths >1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to <100‐m in width at depths >1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to <0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.