Abstract

AbstractBarnyardgrass [Echinochloa crus-galli(L.) P. Beauv] is the foremost weed in rice (Oryza sativaL.) systems, and its control is crucial to successful rice production. Quinclorac, a synthetic auxin herbicide, has been used effectively to manageE. crus-galli. However, occurrences of quinclorac-resistant genotypes are frequently reported, and its resistance evolution has led to questions about the continued utility of quinclorac for grass control. Identification of the resistance mechanism(s) of resistant genotypes will facilitate development of integrated weed management strategies that sustain quinclorac use for management ofE. crus-galli. We evaluated the responses to quinclorac of two contrasting genotypes: E7 (resistant, R) and LM04 (susceptible, S). Quinclorac induced ethylene and cyanide biosynthesis in the S-genotype. Both genotypes responded similarly to an increasing application of exogenous 1-carboxylic acid aminocyclopropane (ACC) and potassium cyanide, and their growth was inhibited at higher doses. The key mechanism for cyanide (HCN) detoxification in plants, β-cyanoalanine synthase (β-CAS) activity, was evaluated in both genotypes, and no significant difference was observed in the basal activity. However, quinclorac significantly induced β-CAS–like activity in the S-genotype, which is consistent with the increased synthesis of ethylene and cyanide. This work suggests that the resistance to quinclorac of the E7 R-genotype is likely related to an alteration in the auxin signal transduction pathway, causing a lower stimulation of ACC synthase and, therefore, limited synthesis of ethylene and HCN after quinclorac treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.