Abstract

Contact tracing is an important tool for controlling the spread of infectious diseases, including COVID-19. Here, we investigate the spread of COVID-19 and the effectiveness of contact tracing in a university population, using a data-driven ego-centric network model constructed with social contact data collected during 2020 and similar data collected in 2010. We find that during 2020, university staff and students consistently reported fewer social contacts than in 2010, however those contacts occurred more frequently and were of longer duration. We find that contact tracing in the presence of social distancing is less impactful than without social distancing. By combining multiple data sources, we show that University-aged populations are likely to develop asymptomatic COVID-19 infections. We find that asymptomatic index cases cannot be reliably discovered through contact tracing and consequently transmission in their social network is not significantly reduced through contact tracing. In summary, social distancing restrictions had a large impact on limiting COVID-19 outbreaks in universities; to reduce transmission further contact tracing should be used in conjunction with alternative interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.