Abstract

BackgroundDivergent selection can be a major driver of ecological speciation. In insects of medical importance, understanding the speciation process is both of academic interest and public health importance. In the West Nile virus vector Culex pipiens, intraspecific pipiens and molestus forms vary in ecological and physiological traits. Populations of each form appear to share recent common ancestry but patterns of genetic differentiation across the genome remain unknown. Here, we undertook an AFLP genome scan on samples collected from both sympatric and allopatric populations from Europe and the USA to quantify the extent of genomic differentiation between the two forms.ResultsThe forms were clearly differentiated but each exhibited major population sub-structuring between continents. Divergence between pipiens and molestus forms from USA was higher than in both inter- and intra-continental comparisons with European samples. The proportion of outlier loci between pipiens and molestus (≈3 %) was low but consistent in both continents, and similar to those observed between sibling species of other mosquito species which exhibit contemporary gene flow. Only two of the outlier loci were shared between inter-form comparisons made within Europe and USA.ConclusionThis study supports the molestus and pipiens status as distinct evolutionary entities with low genomic divergence. The low number of shared divergent loci between continents suggests a relatively limited number of genomic regions determining key typological traits likely to be driving incipient speciation and/or adaptation of molestus to anthropogenic habitats.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0477-z) contains supplementary material, which is available to authorized users.

Highlights

  • Divergent selection can be a major driver of ecological speciation

  • Culex pipiens sensu stricto is a widespread mosquito species with an important medical and veterinary impact owing to its role in the transmission of arthropod-borne viruses such as the potentially-fatal zoonotic West Nile virus [8]

  • Our results provide an insight into how the genetic background of pipiens and molestus forms varies based on their geography and population characteristics

Read more

Summary

Introduction

Divergent selection can be a major driver of ecological speciation. In the West Nile virus vector Culex pipiens, intraspecific pipiens and molestus forms vary in ecological and physiological traits. Divergent selection is a major driving force in speciation models involving taxa with overlapping geographic distributions, either during sympatric speciation or via reinforcement of isolation between allopatric incipient species after secondary contact [1, 2]. In insects of medical importance, the speciation process may have a public health dimension. Culex pipiens sensu stricto is a widespread mosquito species with an important medical and veterinary impact owing to its role in the transmission of arthropod-borne viruses (arboviruses) such as the potentially-fatal zoonotic West Nile virus [8]. The molestus form is differentiated from pipiens by four key ecological/physiological characteristics: autogeny (the capacity to lay eggs without taking a blood meal), stenogamy (the capacity to mate in confined spaces), homodynamy (a continuous life cycle without diapause), and mammophily (a preference to feed on mammals, including humans) [9, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.