Abstract
Purpose(1) Develop a deep learning system (DLS) to identify pneumonia in pediatric chest radiographs, and (2) evaluate its generalizability by comparing its performance on internal versus external test datasets.MethodsRadiographs of patients between 1 and 5 years old from the Guangzhou Women and Children’s Medical Center (Guangzhou dataset) and NIH ChestXray14 dataset were included. We utilized 5232 radiographs from the Guangzhou dataset to train a ResNet-50 deep convolutional neural network (DCNN) to identify pediatric pneumonia. DCNN testing was performed on a holdout set of 624 radiographs from the Guangzhou dataset (internal test set) and 383 radiographs from the NIH ChestXray14 dataset (external test set). Receiver operating characteristic curves were generated, and area under the curve (AUC) was compared via DeLong parametric method. Colored heatmaps were generated using class activation mapping (CAM) to identify important image pixels for DCNN decision-making.ResultsThe DCNN achieved AUC of 0.95 and 0.54 for identifying pneumonia on internal and external test sets, respectively (p < 0.0001). Heatmaps generated by the DCNN showed the algorithm focused on clinically relevant features for images from the internal test set, but not for images from the external test set.ConclusionOur model had high performance when tested on an internal dataset but significantly lower accuracy when tested on an external dataset. Likewise, marked differences existed in the clinical relevance of features highlighted by heatmaps generated from internal versus external datasets. This study underscores potential limitations in the generalizability of such DLS models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.