Abstract

Segregation of retinal ganglion cell (RGC) axons by type and eye of origin is considered a hallmark of dorsal lateral geniculate nucleus (dLGN) structure. However, recent anatomical studies have shown that neurons in mouse dLGN receive input from multiple RGC types of both retinae. Whether convergent input leads to relevant functional interactions is unclear. We studied functional eye-specific retinogeniculate convergence using dual-color optogenetics invitro. dLGN neurons were strongly dominated by input from one eye. Most neurons received detectable input from the non-dominant eye, but this input was weak, with a prominently reduced AMPAR:NMDAR ratio. Consistent with this, only a small fraction of thalamocortical neurons was binocular invivo across visual stimuli and cortical projection layers. Anatomical overlap between RGC axons and dLGN neuron dendrites alone did not explain the strong bias toward monocularity. We conclude thatfunctional eye-specific input selection and refinement limit convergent interactions in dLGN, favoring monocularity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.