Abstract
The superposition of the regular arrangement of tubulin subunits in microtubules gives rise to moiré patterns in cryo-electron micrographs. The moiré period can be predicted from the dimensions of the tubulin subunits and their arrangement in the surface lattice. Although the average experimental moiré period is usually in good agreement with the theoretical one, there is variation both within and between microtubules. In this study, we addressed the origin of this variability. We examined different possibilities, including artefacts induced by the preparation of the vitrified samples, and variations of the parameters that describe the microtubule surface lattice. We show that neither flattening nor bending of the microtubules, nor changes in the subunit dimensions, can account for the moiré period variations observed in 12 and 14 protofilament microtubules. These can be interpreted as slight variations, in the range -0.5 A to +0.9 A, of the lateral interactions between tubulin subunits in adjacent protofilaments. These results indicate that the inter-protofilament bonds are precisely maintained in microtubules assembled in vitro from pure tubulin. The fact that the moiré period is not affected by bending indicates that the local interactions between tubulin subunits are sufficiently stiff to accommodate large deformations of the microtubule wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.