Abstract

Interference alignment is degree of freedom optimal on -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits, and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ·log SNR +O(1), the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient C <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> can be significantly reduced in networks with asymmetric interference topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.