Abstract

Stable isotope analysis is an increasingly used molecular tool to reconstruct the diet and ecology of elusive primates such as unhabituated chimpanzees. The consumption of C4 plant feeding termites by chimpanzees may partly explain the relatively high carbon isotope values reported for some chimpanzee communities. However, the modest availability of termite isotope data as well as the diversity and cryptic ecology of termites potentially consumed by chimpanzees obscures our ability to assess the plausibility of these termites as a C4 resource. Here we report the carbon and nitrogen isotope values from 79 Macrotermes termite samples from six savanna woodland chimpanzee research sites across equatorial Africa. Using mixing models, we estimated the proportion of Macrotermes C4 plant consumption across savanna woodland sites. Additionally, we tested for isotopic differences between termite colonies in different vegetation types and between the social castes within the same colony in a subset of 47 samples from 12 mounds. We found that Macrotermes carbon isotope values were indistinguishable from those of C3 plants. Only 5 to 15% of Macrotermes diets were comprised of C4 plants across sites, suggesting that they cannot be considered a C4 food resource substantially influencing the isotope signatures of consumers. In the Macrotermes subsample, vegetation type and caste were significantly correlated with termite carbon values, but not with nitrogen isotope values. Large Macrotermes soldiers, preferentially consumed by chimpanzees, had comparably low carbon isotope values relative to other termite castes. We conclude that Macrotermes consumption is unlikely to result in high carbon isotope values in either extant chimpanzees or fossil hominins.

Highlights

  • Our understanding of wild chimpanzee (Pan troglodytes) feeding ecology has been primarily informed by direct observations of feeding behavior within the limited number of chimpanzee communities consistently monitored by long-term research projects (e.g. [1, 2])

  • The results of our linear mixed models (LMM) suggest a strong influence of both fixed effects habitat and caste on the δ13C values of M. subhyalinus specimens from 12 different mounds at Issa (χ2 = 10.4, df = 4, p < 0.001), but no effect on the δ15N values (χ2 = 2.4, df = 4, p = 0.649)

  • In the δ13C model, the effect of habitat was significant (χ2 = 9.1, df = 2, p = 0.010) with estimates suggesting 1.7‰ lower δ13C values in savanna woodland areas and 0.4‰ lower δ13C values in gallery forest compared to newly colonizing forest areas (Fig 4)

Read more

Summary

Introduction

Our understanding of wild chimpanzee (Pan troglodytes) feeding ecology has been primarily informed by direct observations of feeding behavior within the limited number of chimpanzee communities consistently monitored by long-term research projects (e.g. [1, 2]). This bias towards a small number of chimpanzee communities has been tempered by the increasing use of indirect methods, such as stable isotope analysis, that enable large-scale cross site comparisons of the various feeding behaviors of both habituated and unhabituated chimpanzee communities [3,4,5,6,7,8,9,10] Insights obtained from such studies are only as good as our understanding of the various stable isotope ratios, such as carbon (δ13C) and nitrogen (δ15N), of consumed organisms by chimpanzees at different locales [3,4,5, 11,12,13]. The consumption of C4 plant reliant termites has been posited as a potential contributor to relatively high δ13C values in some savanna woodland chimpanzee communities [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call