Abstract

Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom). This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9. HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 (Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 (Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 (Z = -5.32) at the basal ganglia and 8.79 versus 8.06 (Z = -4.93) at the middle cerebellar peduncles. All results were significant with P-value < 0.01. Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR.

Highlights

  • Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury

  • Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former

  • Hounsfield units (HUs) of the images produced by CereTom do fulfil the recommendation of the American College of Radiology (ACR)

Read more

Summary

Introduction

Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. Medical imaging is the most common application of CT scan for diagnostic and therapeutic purposes. CT scan has become the most accessible diagnostic toolkit for head and brain imaging. The use of CT in general has led to a major shift since its invention in the 1970s and 1980s. CT scan is superior to magnetic resonance imaging (MRI). Indications for head CT imaging include head trauma, transient ischaemic attack, acute stroke and subarachnoid haemorrhage, among others

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.