Abstract
Multiple spectroscopic technologies and chemometric analyses were combined to explore the compositional characteristics and Cu binding performance of biochar-derived dissolved organic matter (DOM). The DOM samples were extracted from biochars produced from lignocellulose-rich rapeseed cake (RSC) by pyrolysis at 300, 500, and 700 °C (i.e., RSC300, RSC500, RSC700). Fourier transform infrared spectroscopy (FTIR) and carbon K-edge near-edge X-ray absorption fine structure spectroscopy (NEXAFS) analyses were combined to elucidate the molecular-level C species in the DOM. With the increasing pyrolysis temperature, DOM aromaticity increased, whereas the proportion of metal complexing sites (e.g., carboxyl and phenolic groups) decreased. Fluorescence excitation-emission matrix (EEM) spectroscopy with parallel factor analysis (PARAFAC) indicated that biochar DOM, irrespective of pyrolysis temperature, was mostly composed of three types of humic-like components (C1–C3), and a small amount of a protein-like component (C4). As charring temperature increased, DOM concentrations decreased substantially, but the humic-like C3 with abundant aromatic structures became predominant. Fluorescence quenching experiment and two-dimensional correlation spectroscopy (2D-COS) analysis suggested that the preferential Cu(II) binding fractions of the DOM were the humic-like substances. Moreover, the quenching curve fitting results for individual components indicated that despite the Cu(II) binding affinity was slightly enhanced as the pyrolysis temperature increased, the binding capacities of the four components decreased. In general, the DOM components from RSC biochar exhibited limited Cu(II) binding capacities (2.18–17.7 μmol L−1). Results from this study improved understanding of the mechanisms by which biochar DOM interacts with Cu, and provided tools for fast screening of biochars to reduce their environmental risks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.