Abstract

Ultrasonic through-transmission data processed using the back-projection algorithm offers depth and lateral information about a defect beyond the capabilities of current through-transmission techniques. This technique was trialled on a carbon steel block containing side-drilled holes. Imaging artefacts can arise from the use of the backprojection algorithm, due to applying a weighting of one to each pixel, irrespective of how much of the pixel is intersected by the beam. Noise can also occur within the image where there are few intersections of the pixels made. This is seen at the edges of the image. In this paper, a novel back-projection technique utilises the weighting of pixels, dependent on the normalised weight of the beam that intersects them, to reduce any artefacts that occurred previously due to the backprojection algorithm. This paper also explores the use of the algebraic reconstruction technique (ART) algorithm for noise removal, thus increasing the sharpness of the defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.