Abstract
The case of diffraction tomography with limited angle of projections is discussed from the algorithmic and experimental points of view. To reconstruct a three-dimensional distribution of refractive index of a micro-object under study, we use a hybrid approach based on the simultaneous algebraic reconstruction technique (SART) enhanced by a compressed sensing reconstruction technique. It enables us to apply the standard computed tomography algorithms (which assume that the rays are traveling in straight lines through the object) for phase data obtained by means of digital holography. We present the results of analysis of a phantom and real objects obtained by applying SART with anisotropic total variation (ATV) minimization. The real data are acquired from an experimental setup based on a Mach–Zehnder interferometer configuration. Also, it is proven that in the case of simulated data, the limited number of projections captured in a limited angular range can be compensated by a higher number of iterations of the algorithm. We also show that the SART + ATV method applied for experimental data gives better results than the data replenishment algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.