Abstract

Effective mass equations are the simplest models of carrier states in a semiconductor structures that reduce the complexity of a solid-state system to Schrödinger- or Pauli-like equations resempling those well known from quantum mechanics textbooks. Here we present a systematic derivation of a conduction-band effective mass equation for a self-assembled semiconductor quantum dot in a magnetic field from the 8-band k · p theory. The derivation allows us to classify various forms of the effective mass equations in terms of a hierarchy of approximations. We assess the accuracy of the approximations in calculating selected spectral and spin-related characteristics. We indicate the importance of preserving the off-diagonal terms of the valence band Hamiltonian and argue that an effective mass theory cannot reach satisfactory accuracy without self-consistently including non-parabolicity corrections and renormalization of k · p parameters. Quantitative comparison with the 8-band k · p results supports the phenomenological Roth-Lax-Zwerdling formula for the g-factor in a nanostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.