Abstract

The main purpose of this study is to predict limit cycles of a dynamic fuzzy control system by combining a stability equation, describing function and parameter plane. The stability of a linearized dynamic fuzzy control system is then analyzed using stability equations and the parameter plane method, with the assistance of a describing function method. This procedure identifies the amplitude and frequency of limit cycles that are clearly formed by the dynamic fuzzy controller in the parameter plane. Moreover, the suppression of the limit cycle by adjusting control parameters is proposed. Continuous and sampled-data systems are addressed, and the proposed approach can easily be extended to a fuzzy control system with multiple nonlinearities. Simulations are performed to demonstrate the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.