Abstract

The response of CO2 assimilation rate (A) to the intercellular partial pressure of CO2 (Ci) was measured on intact lemon leaves over a range of temperatures (10 to 40ºC). The A/Ci response shows how change in the leaf temperature alters the activity of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase (Rubisco) and RuBP regeneration via electron transport. The rate of A reached a maximum of 7.9 to 8.9 µmol m-2 s-1 between 25 and 30ºC, while dark respiration (Rd) increased with temperature from 0.4 µmol m-2 s-1 at 10ºC to 1.4 µmol m-2 s-1 at 40ºC. The maximum rates of carboxylation (Vc,max) and the maximum rates of electron transport (Jmax) both increased over this temperature range from 7.5 to 142 µmol m-2 s-1 and from 23.5 to 152 µmol m-2 s-1, respectively. These temperature responses showed that A can be limited by either process depending on the leaf temperature, when Ci or stomatal conductance are not limiting. The decrease in A associated with higher temperatures is in part a response to the greater increase in the rate of oxygenation of RuBP compared with carboxylation and Rd at higher temperatures. Although A can in theory be limited at higher Ci by the rate of triose-phosphate utilization, this limitation was not evident in lemon leaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.