Abstract

Ultrafast optical switching in a semiconductor laser amplifier (SLA) at transparency current is studied under a strong pump condition. The switch configuration is a nonlinear optical loop mirror with a SLA as the nonlinear element. We demonstrate optical switching with 2 ps recovery time and 60% nonlinear transmission at switching energy of 9 pJ. We find that the transparency current is pump power dependent and that the transparency current is different for uniform 7-bit input control pulses at 100 Gb/s. We believe these two outcomes are due to significant carrier generation via two photon absorption (TPA) at high pump intensity. To verify our hypothesis, we modify coupled propagation equations by including the carrier generation due to the TPA and solve the equations numerically. Good agreement between the experimental and simulation results is obtained. We conclude that to achieve complete pattern-independent 100 Gb/s optical switching using a SLA at transparency current, we have to avoid TPA or use the SLA with a transit time shorter than the control pulse width.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call