Abstract
One of the standard methods in a verification of predictive models is a cross validation. In this paper, we examined prediction stability of simple learning set of rules classifier under the k-fold cross validation. We described a class of rules that can pass the k-fold cross validation with zero or a very low variance in accuracy of prediction. The lossless prediction of correct/incorrect assignment distribution theorem, given by the so-called k-fold stable rules, is established, and its implications are discussed and applied in the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.