Abstract

The magnetic data set compiled for the Decade of North American Geology (DNAG) project presents an important digital data base that can be used to examine the North American crust. The data represent a patchwork from many individual airborne and marine magnetic surveys. However, the portion of data for the conterminous U.S. has problems that limit the resolution and use of the data. Now that the data are available in digital form, it is important to describe the data limitations more specifically than before. The primary problem is caused by datum shifts between individual survey boundaries. In the western U.S., the DNAG data are generally shifted less than 100 nT. In the eastern U.S., the DNAG data may be shifted by as much as 300 nT and contain regionally shifted areas with wavelengths on the order of 800 to 1400 km. The worst case is the artificial low centered over Kentucky and Tennessee produced by a series of datum shifts. A second significant problem is lack of anomaly resolution that arises primarily from using survey data that is too widely spaced compared to the flight heights above magnetic sources. Unfortunately, these are the only data available for much of the U.S. Another problem is produced by the lack of common observation surface between individual pieces of the U.S. DNAG data. The height disparities introduce variations in spatial frequency content that are unrelated to the magnetization of rocks. The spectral effects of datum shifts and the variation of spatial frequency content due to height disparities were estimated for the DNAG data for the conterminous U.S. As a general guideline for digital filtering, the most reliable features in the U.S. DNAG data have wavelengths roughly between 170 and 500 km, or anomaly half‐widths between 85 and 250 km. High‐quality, large‐region magnetic data sets have become increasingly important to meet exploration and scientific objectives. The acquisition of a new national magnetic data set with higher quality at a greater range of wavelengths is clearly in order. The best approach is to refly much of the U.S. with common specifications and reduction procedures. At the very least, magnetic data sets should be remerged digitally using available or newly flown long‐distance flight‐line data to adjust survey levels. In any case, national coordination is required to produce a consistent, high‐quality national magnetic map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.