Abstract

We consider the accuracy of modeling ultrashort pulse propagation and supercontinuum generation in optical fibers based on the assumption of a material Raman response that varies linearly with frequency. Numerical simulations in silica fiber using the linear Raman gain approximation are compared with simulations using the full Raman response, and differences in the spectral, temporal and stability characteristics are considered. A major finding is that for conditions typical of many experiments, although the input pulses may satisfy the criteria where the linear gain approximation is valid, the subsequent evolution and breakup of the input pulse can rapidly lead to a situation where the linear model leads to severe inaccuracies. Numerical artifacts within the linear model inducing unphysical pulse collapse are also identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.